Industry view of Government support for industry & university collaboration

Professor Ric Parker CBE FREng
Recently-retired Director of Research & Technology
Rolls-Royce

Joint RAEng & CAE Symposium 4&5 July 2016

Technology Readiness Levels - Description

- TRL 1 Basic principles observed
- TRL 2 Technology concept formulated
- TRL 3 Experimental proof of concept
- TRL 4 Technology validated in lab
- TRL 5 Technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies)
- TRL 6 Technology demonstrated in relevant environment (industrially relevant environment in the case of key enabling technologies)
- TRL 7 System prototype demonstration in operational environment
- TRL 8 System complete and qualified
- TRL 9 Actual system proven in operational environment (competitive manufacturing in the case of key enabling technologies; or in space)

Technology Readiness Levels – Description space for industry & university collaboration

•	TRL 1	Basic principles observed
•	TRL 2	Technology concept formulated
•	TRL 3	Experimental proof of concept
•	TRL 4	Technology validated in laboratory
•	TRL 5	Technology validated at scale in relevant environment
•	TRL 6	Technology demonstrated in relevant environment
		as part of complete system
•	TRL 7	System prototype demonstration in operational
		environment
•	TRL 8	System complete and qualified
•	TRL 9	Actual system proven in operational environment

Dowling report – UK funding complexity map

Engineering and Physical Sciences Research Council

- The majority of EPSRC money is used to fund research directly with the Universities
- However, there are key schemes that support B-U* engagement
 - CASE PhD studentship (Co-operative Award in Science and Engineering)
 - DTC (Doctoral Training Centres)
 - IDTC (Industrial doctoral training centres)
 - EngD Engineering Doctorate
 - Strategic alliance

^{*}Business to University

Innovate UK

- Innovate UK
 - Originally the "Technology Strategy Board"
 - Created to promote collaborative research.
- Grants support the research programme with up to 50% funding
- More than half the total funding flows to Universities
- Can fund B-B (Business to Business) or B-U (Business to University programmes)

UK Catapults

- A new construct designed to create industrially-relevant research centres with strong ties to Universities
 - Modelled on the German Fraunhofer Institutes
- Funding model was 1/3 1/3 1/3
 - One third direct Government grants
 - One third funding won competitively
 - One third industry funded

UK Catapults

Current catapults

Royal Academy & Royal Society

- Professional bodies have their own schemes
- Royal Academy Research Chairs and Senior Research Fellowships
- RA Industrial secondments Scheme
- Royal Society Industrial Fellowships

European Horizon 2020

- The latest of the European "Framework Programmes"
- Seven year programme starting in 2015
- €80Bn
- Funding can be 100% of direct cost plus 25% of overheads

ROLLS-ROYCE CASE STUDY

Research and development

Rolls-Royce

We develop technologies and intellectual property that provide competitive advantage in our chosen markets.

£1.25bn

Research and Development in 2015

650

patent applications in 2015

31

University Technology Centres worldwide

Benefits of University Research Environment

- Specialised skills
- 'Time to think'
 - Escape from short term problems
- Challenge and dialogue
 - Multi-sectoral perspective
- Long term capability development
 - Recruitment & training skilled personnel

Critical success factors

- Partnership with Government agencies
 - Funding and support for university infrastructure
 - Support for complementary basic research
 - Support to attract key researchers
- Up front agreement on IPR, publication, etc.
- Joint review and measurement of quality, results, IPR capture, technology and skilled staff transfer
- Customisation of approach for different countries and cultures

Delivery of Capability Acquisition

Conclusion

- University & Industry collaboration is a threeway pact
 - University + Company + Government
- Together they can achieve more than they could individually
- This helps to bridge the "Valley of Death"